52 research outputs found

    Quality-diversity optimization: a novel branch of stochastic optimization

    Get PDF
    Traditional optimization algorithms search for a single global optimum that maximizes (or minimizes) the objective function. Multimodal optimization algorithms search for the highest peaks in the search space that can be more than one. Quality-Diversity algorithms are a recent addition to the evolutionary computation toolbox that do not only search for a single set of local optima, but instead try to illuminate the search space. In effect, they provide a holistic view of how high-performing solutions are distributed throughout a search space. The main differences with multimodal optimization algorithms are that (1) Quality-Diversity typically works in the behavioral space (or feature space), and not in the genotypic (or parameter) space, and (2) Quality-Diversity attempts to fill the whole behavior space, even if the niche is not a peak in the fitness landscape. In this chapter, we provide a gentle introduction to Quality-Diversity optimization, discuss the main representative algorithms, and the main current topics under consideration in the community. Throughout the chapter, we also discuss several successful applications of Quality-Diversity algorithms, including deep learning, robotics, and reinforcement learning

    Quality-diversity optimization: a novel branch of stochastic optimization

    Get PDF
    Traditional optimization algorithms search for a single global optimum that maximizes (or minimizes) the objective function. Multimodal optimization algorithms search for the highest peaks in the search space that can be more than one. Quality-Diversity algorithms are a recent addition to the evolutionary computation toolbox that do not only search for a single set of local optima, but instead try to illuminate the search space. In effect, they provide a holistic view of how high-performing solutions are distributed throughout a search space. The main differences with multimodal optimization algorithms are that (1) Quality-Diversity typically works in the behavioral space (or feature space), and not in the genotypic (or parameter) space, and (2) Quality-Diversity attempts to fill the whole behavior space, even if the niche is not a peak in the fitness landscape. In this chapter, we provide a gentle introduction to Quality-Diversity optimization, discuss the main representative algorithms, and the main current topics under consideration in the community. Throughout the chapter, we also discuss several successful applications of Quality-Diversity algorithms, including deep learning, robotics, and reinforcement learning

    Physicians' awareness of gadolinium retention and MRI timing practices in the longitudinal management of pituitary tumors::a "Pituitary Society" survey

    Get PDF
    PURPOSE: In view of mounting attention related to possible brain retention of gadolinium-based contrast agents (GBCAs) in patients with normal renal function, our purpose was to detail results from a survey of pituitary experts to assess: 1) the timing interval and frequency of pituitary magnetic resonance imaging (MRI) following surgical and/or medical and/or radiation therapy of pituitary tumors, 2) awareness of the types of GBCAs used and their possible safety issues. METHODS: The Pituitary Society Education Committee composed a survey with 12 multiple choice questions, 8 of which specifically addressed the time interval and frequency of MRI in the longitudinal management of pituitary tumors. The survey was distributed at two meetings; the International Pituitary Neurosurgeons Society conference in San Diego, CA, on February 18th, 2018, and the Pituitary Society Membership and Career Development Forum, Chicago, IL on March 18th, 2018. RESULTS: There is consensus among pituitary endocrinologists and neurosurgeons that long-term repeated imaging is recommended in most pituitary tumors, although the precise strategy of timing varied depending on the specialist group and the specific clinical context of the adenoma. The data also suggest that International Pituitary Neurosurgeons Society neurosurgeons, as well as Pituitary Society neuroendocrinologists, are sometimes unaware of which contrast agents are used by their institution, and many are also unaware that evidence of long-term brain retention has been reported with the use of GBCAs in patients with normal function. CONCLUSIONS: International pituitary endocrinologists and pituitary neurosurgeons experts suggest ongoing MRIs for the management of pituitary tumors; strategies vary based on clinical context, but also on individual experience and practice

    Enhanced Piezoresponse and Nonlinear Optical Properties of Fluorinated Self-Assembled Peptide Nanotubes

    Get PDF
    Self-assembled L,L-diphenylalanine (FF) nanostructures offer an attractive platform for photonics and nonlinear optics. The nonlinear optical (NLO) coefficients of FF nanotubes depend on the diameter of the tube [S. Khanra et al. Phys. Chem. Chem. Phys. 19(4), 3084-3093 (2017)]. To further enhance the NLO properties of FF, we search for structural modifications. Here, we report on the synthesis of fluorinated FF dipeptides by replacing one ortho-hydrogen atom in each of the phenyl groups of FF by a fluorine atom. Density-functional theoretical calculations yield insights into minimum energy conformers of fluorinated FF (Fl-FF). Fl-FF self-assembles akin to FF into micron-length tubes. The effects of fluorination are evaluated on the piezoelectric response and nonlinear optical properties. The piezoelectric d15 coefficient of Fl-FF is found to be more than 10 times higher than that of FF nanotubes, and the intensity of second harmonic generation (SHG) polarimetry from individual Fl-FF nanotubes is more than 20 times that of individual FF nanotubes. Furthermore, we obtain SHG images to compare the intensities of FF and Fl-FF tubes. This work demonstrates the potential of fluorine substitution in other self-assembled biomimetic peptides for enhancing nonlinear optical response and piezoelectricity

    Automatic Calibration of Artificial Neural Networks for Zebrafish Collective Behaviours using a Quality Diversity Algorithm

    Full text link
    During the last two decades, various models have been proposed for fish collective motion. These models are mainly developed to decipher the biological mechanisms of social interaction between animals. They consider very simple homogeneous unbounded environments and it is not clear that they can simulate accurately the collective trajectories. Moreover when the models are more accurate, the question of their scalability to either larger groups or more elaborate environments remains open. This study deals with learning how to simulate realistic collective motion of collective of zebrafish, using real-world tracking data. The objective is to devise an agent-based model that can be implemented on an artificial robotic fish that can blend into a collective of real fish. We present a novel approach that uses Quality Diversity algorithms, a class of algorithms that emphasise exploration over pure optimisation. In particular, we use CVT-MAP-Elites, a variant of the state-of-the-art MAP-Elites algorithm for high dimensional search space. Results show that Quality Diversity algorithms not only outperform classic evolutionary reinforcement learning methods at the macroscopic level (i.e. group behaviour), but are also able to generate more realistic biomimetic behaviours at the microscopic level (i.e. individual behaviour).Comment: 8 pages, 4 figures, 1 tabl

    Self-assembly and intracellular delivery of DNA by a truncated fragment derived from the Trojan peptide Penetratin

    Get PDF
    Penetratin is a short Trojan peptide that attracts great interest in biomedical research for its capacity to translocate biological membranes. Herein, we study in detail both self-assembly and intracellular delivery of DNA by the heptamer KIWFQNR, a truncated peptide derived from Penetratin. This shortened sequence possesses a unique design with bolaamphiphilic characteristics that preserves the longest noncationic amino acid portion found in Penetratin. These features convey amphipathicity to assist self-assembly and make it a suitable model for exploring the role of hydrophobic residues for peptide interaction and cell uptake. We show that the fragment forms peptiplexes (i.e., peptide–DNA complexes), and aggregates into long nanofibers with clear β-sheet signature. The supramolecular structure of nanofibers is likely composed of DNA cores surrounded by a peptide shell to which the double helix behaves as a template and induces fibrillization. A nucleation and growth mechanism proceeding through liquid–liquid phase separation of coacervates is proposed for describing the self-assembly of peptiplexes. We also demonstrate that peptiplexes deliver double-stranded 200 bp DNA into HeLa cells, indicating its potential for preparing non-viral vectors for oligonucleotides through noncovalent strategies. Since the main structural features of native Penetratin are conserved in this simpler fragment, our findings also highlight the role of uncharged amino acids for structuration, and thus for the ability of Penetratin to cross cell membranes

    2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease

    Get PDF
    The recommendations listed in this document are, whenever possible, evidence based. An extensive evidence review was conducted as the document was compiled through December 2008. Repeated literature searches were performed by the guideline development staff and writing committee members as new issues were considered. New clinical trials published in peer-reviewed journals and articles through December 2011 were also reviewed and incorporated when relevant. Furthermore, because of the extended development time period for this guideline, peer review comments indicated that the sections focused on imaging technologies required additional updating, which occurred during 2011. Therefore, the evidence review for the imaging sections includes published literature through December 2011

    Phylogenetic relationships of Biebersteinia Stephan (Geraniaceae) inferred from rbcL and atpB sequence comparisons.

    No full text
    Phylogenetic analysis of rbcL and atpB gene sequences from Biebersteinia Stephan (represented by B. orphanidis Boiss.) and from selected taxa of the rosids I and II clades does not support traditional grouping of this genus in Geraniaceae s.s. nor in Geraniales, but indicates strong support for a position nested within Sapindales (as recently delimitated). The rbcL and atpB phylogenies obtained were congruent but differently resolved and do not link Biebersteinia to any other clade within Sapindales. Biebersteinia is on a long branch on its own which, given the particular combination of apomorphic morphological characters, justifies familial statu
    • …
    corecore